Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biosaf ; 29(1): 26-34, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38434099

ABSTRACT

Introduction: The current global situation with increasing zoonotic transmissions of pathogens, rapidly changing ecosystems due to the climate change and with it the distribution of potential vectors, demands new ways of teaching and educating students in the field of infectious disease research. Methods: The international master program "Infectious Diseases and One Health-IDOH" started its second application period in 2019. Biosafety is an integral part of IDOH, exemplified by a biosafety level 3 hands-on training at the Animal Health Research Center IRTA-Centre de Recerca en Sanitat Animal (CReSA), Barcelona. At Hanover Medical School, biosafety is expanded to a comprehensive biorisk management approach with focus on risk assessment, bioethics, and training in a mobile containment laboratory. This article illustrates in depth the intention and the individual teaching units of the biorisk management module within the third semester of the IDOH master. Risk assessment is taught based on the new WHO Laboratory Biosafety Manual 4th edition, which represents a paradigm shift toward a risk-based approach instead of a prescriptive definition of biosafety levels. This methodology will enable the international IDOH students to cope with different national legislations and to provide guidance on biosafety in their home countries. In the final unit, the students operate a mobile containment laboratory and simulated a viral hemorrhagic fever outbreak in Africa. Conclusion: In sum, this module combines theoretical risk assessment and its practical implementation in the mobile laboratory as a future direction for training infectiologists. In addition, our report may serve as a blue print for others to amend their education with the herewith mentioned pillars of biosafety teaching.

2.
J Biol Chem ; 280(16): 15489-92, 2005 Apr 22.
Article in English | MEDLINE | ID: mdl-15722557

ABSTRACT

The transcription factors of the Myc/Max/Mad network play essential roles in the regulation of cellular behavior. Mad1 inhibits cell proliferation by recruiting an mSin3-corepressor complex that contains histone deacetylase activity. Here we demonstrate that Mad1 is a potent inhibitor of the G(1) to S phase transition, a function that requires Mad1 to heterodimerize with Max and to bind to the corepressor complex. Cyclin E/CDK2, but not cyclin D and cyclin A complexes, fully restored S phase progression. In addition inhibition of colony formation and gene repression by Mad1 were also efficiently antagonized by cyclin E/CDK2. This was the result of cyclin E/CDK2 interfering with the interaction of Mad1 with HDAC1 and reducing HDAC activity. Our findings define a novel interplay between the cell cycle regulator cyclin E/CDK2 and Mad1 and its associated repressor complex and suggests an additional mechanism how cyclin E/CDK2 affects the G(1) to S phase transition.


Subject(s)
CDC2-CDC28 Kinases/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , Cyclin E/metabolism , Gene Expression Regulation , Nuclear Proteins/metabolism , 3T3-L1 Cells , Animals , Cyclin-Dependent Kinase 2 , Gene Expression Regulation/physiology , Mice , NIH 3T3 Cells , S Phase/physiology , Transcription, Genetic/physiology
3.
Oncogene ; 24(12): 1982-93, 2005 Mar 17.
Article in English | MEDLINE | ID: mdl-15674325

ABSTRACT

The proto-oncoprotein c-Myc functions as a transcriptional regulator that controls different aspects of cell behavior, including proliferation, differentiation, and apoptosis. In addition, Myc proteins have the potential to transform cells and are deregulated in the majority of human cancers. Several Myc-interacting factors have been described that mediate part of Myc's functions in the control of cell behavior. Here, we describe the isolation of a novel 150 kDa protein, designated PARP-10, that interacts with Myc. PARP-10 possesses domains with homology to RNA recognition motifs and to poly(ADP-ribose) polymerases (PARP). Molecular modeling and biochemical analysis define a PARP domain that is capable of ADP-ribosylating PARP-10 itself and core histones, but neither Myc nor Max. PARP-10 is localized to the nuclear and cytoplasmic compartments that is controlled at least in part by a Leu-rich nuclear export sequence (NES). Functionally, PARP-10 inhibits c-Myc- and E1A-mediated cotransformation of rat embryo fibroblasts, a function that is independent of PARP activity but that depends on a functional NES. Together, our findings define a novel PARP enzyme involved in the control of cell proliferation.


Subject(s)
Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Amino Acid Sequence , Cell Division , Cell Line , Chromosome Mapping , Humans , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Plasmids , Protein Biosynthesis , Sequence Alignment , Sequence Homology, Amino Acid , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...